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To date, fMRI research has been concerned primarily with evincing generic
principles of brain function through averaging data from multiple subjects. Given
rapid developments in both hardware and analysis tools, the field is now poised to
study fMRI-derived measures in individual subjects, and to relate these to psy-
chological traits or genetic variations. We discuss issues of validity, reliability and
statistical assessment that arise when the focus shifts to individual subjects and
that are applicable also to other imaging modalities. We emphasize that individual
assessment of neural function with fMRI presents specific challenges and neces-
sitates careful consideration of anatomical and vascular between-subject vari-
ability as well as sources of within-subject variability.

From the Group to the Individual
Brain imaging with blood oxygen level-dependent functional magnetic resonance imaging
(BOLD fMRI) has been used extensively since the early 1990s to understand generic aspects
of brain function, typically by averaging data across individuals to improve the signal-to-noise
ratio (SNR). The statistical benefits of averaging across subjects have also been leveraged in
group comparisons, for example in studies of clinical populations. However, these studies have
historically fallen short of a proper characterization of brain function at the level of the individual.
While the importance of a fully personalized investigation of brain function has been recognized
for several years [1,2], only recent technological advances now make it possible. For example,
there are advances already at the acquisition level, such as higher field strength and faster
acquisition, which have led to substantial SNR improvements [3]. Attempts at interpreting
individual subject fMRI measurements have become a major focus in the past 5 years or so,
partly driven by the rise of ‘resting-state’ fMRI (Box 1). There is interest in examining individual
differences in relation to healthy aging [4,5], personality [6], intelligence [7,8], mood [9] and
genetic polymorphism [10]. On the clinical side, there are considerable efforts to use fMRI to
classify individual subjects as patient or control ([11,12]; reviewed in [13,14]), to select treatment
[15], or predict future outcome ([16]; reviewed in [17]).

Several issues arise when the focus shifts from group averaging to the comparison of the
statistics of individual subjects. The issues can be framed in terms of key concepts from
behavioral research on individual differences, namely validity and reliability. Validity asks whether
the individual differences we measure with BOLD fMRI really reflect what we intend to measure.
One specific concern for validity is whether we are indeed comparing functionally homologous
regions across subjects. Another is whether we are indeed comparing neural function because
BOLD fMRI only provides an indirect measure of neural activity. Reliability, by contrast, asks
whether a finding is stable in the face of variations that should not matter. Reliability is notably
hindered by relatively well-understood noise sources such as motion and subject physiology, as
well as by less well-understood ones such as neuro- or vasoactive substances that we might not
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Interpretation of fMRI data at the level
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properly take into account. Both validity and reliability can be enhanced through the use of readily
available tools; we review the latest advances with respect to these issues and provide some
specific recommendations for how the field can best advance (Figure 1, Key Figure).

In addition, we discuss important statistical considerations on the path to a science of individual
differences from fMRI. Though correlation analysis (between individual fMRI-derived statistics
and other measures of the same individuals) is overwhelmingly used in the literature, it is subject
to overfitting and findings do not always generalize to other samples; instead, the out-of-sample
predictive value of an fMRI-derived statistic with respect to another individual difference measure
must be established. The typical sample size for fMRI studies (n = 10–50) also needs to be
scaled up (to n > 100) for individual differences research; larger sample sizes not only increase
statistical power in general but also allow more complex models to be fit.

Validity: Are Individual Differences Attributable to Brain Function?
A Common Space for Mapping Function
How can we tell whether individual differences in metrics such as BOLD activations or functional
connectivity are actually related to differences in the underlying neural activity or communication,
respectively? One ubiquitous problem arises in matching different brains such that functionally
meaningful comparisons across subjects are possible in the first place. In a typical fMRI analysis
pipeline, both structural and functional data from individual brains are spatially warped to a
common anatomical space. The most widely used common space [18] is the MNI152 atlas, to
which subjects’ brains are anatomically warped via a volumetric transform ([19] for review). Such
registration is appropriate for subcortical structures which are inherently volumetric; by contrast,
the cortex is a 2D structure and volumetric alignment does not properly align folding patterns
across subjects. Although switching to cortical folding-based inter-subject alignment [20,21] has
been shown to somewhat reduce functional mismatch [22,23] (but see [24]), this has not yet
become common practice. There are several reasons for this, from the burden of generating
accurate cortical surfaces for each brain to the additional complexities of working with surface
data (which until recently were not handled well by leading fMRI analysis software). Recent
improvements to Freesurfer's automated cortical surface reconstruction pipeline [25], together
with the release of a new file format that combines surface and volumetric data (Connectivity
Informatics Technology Initiative, CIFTI) and software for visualization and analysis

Glossary
Cluster: a contiguous set of voxels
or vertices whose value in a statistical
parametric map exceeds the cluster-
forming threshold.
Echo planar imaging: any rapid
gradient-echo or spin-echo sequence
in which k-space is traversed in one
(single-shot) or a small number of
excitations (multi-shot). Gradient-echo
EPI is the workhorse of fMRI.
General linear model: a
generalization of the multiple linear
regression model to the case of more
than one dependent variable. The
GLM attempts to explain the BOLD
response at each brain location given
known experimental manipulations.
Global signal: the average BOLD
signal across the whole brain.
Independent component analysis:
a computational method for
separating a multivariate signal into
additive subcomponents. This is
done by assuming that the
subcomponents are non-Gaussian
signals and that they are statistically
independent from each other.
Myelin: a mixture of proteins and
phospholipids forming an insulating
sheath around many nerve fibers,
which increases the speed at which
impulses are conducted. Myelin
content of the cortex can be mapped
using a combination of T1-weighted
and T2-weighted MRI volumes [32].
Overfitting: occurs when a statistical
model describes random error or
noise instead of the underlying
relationship.
Pre-registration: Authors submit
plans for data collection and analysis
to a journal for peer review prior to
conducting the experiment. If the
proposal passes peer-review, and the
authors follow their proposed
experimental plan, the results are
then published irrespective of the
statistical outcome (null or significant).
Preprocessing: operations
performed on raw fMRI data before
statistical analysis.
Realignment: one of the operations
performed during preprocessing of
fMRI data. It consists of spatially
aligning all collected volumes to a
reference volume chosen from the
same experimental run.
Region of interest: a part of the
brain that is singled out for further
analysis, on the basis of anatomical
or functional information.
Representational geometry: Each
experimental condition or stimulus is

Box 1. Resting-state fMRI: The Workhorse of Individual Differences Research

Resting-state fMRI, or RS-fMRI, entails imaging subjects while they lie in the scanner doing nothing and trying not to think
of anything in particular [156]. Spontaneous fluctuations in activity show reproducible correlations across brain regions;
regions with correlated spontaneous activity also tend to be co-activated in task fMRI, thus establishing the relevance of
spontaneous correlations (functional connectivity) to brain function [157,158]. RS-fMRI has now established itself as a
leading approach to the study of brain organization [156].

A major reason for the widespread adoption of the RS-fMRI approach is its minimal requirements. Most subjects can lie
quietly in the scanner for 5 or more minutes [159] (for more advanced analyses, up to 100 minutes of data may be
required for best results [160]). Of course, careful investigations have pointed out ‘details’ that influence the data collected
during the resting-state, such as whether the subject's eyes are open or closed [161], whether they are completely awake
[124], what they are actually thinking about during the run [162–164], or what task they performed immediately preceding
the run [165]. Changes in the strength and directionality of functional connections have been described between runs in
the same session, but also at much faster timescales (seconds to minutes) during a run (reviewed in [166]). Functional
connectivity can also be estimated from task fMRI data, usually following the removal of stimulus-evoked activity [72], and
shares about half its variance with the functional connectivity estimated from RS-fMRI data [167]. The remaining half of
unshared variance could complicate the interpretation of individual differences in functional connectivity [94].

It remains the case that RS-fMRI provides the easiest functional data to collect and aggregate, across subject
populations and sites [145], as is now done in several large efforts, such as those of the Human Connectome Project
[149,168]. Individual differences research requires large sample sizes (see also main text) and thus RS-fMRI, despite
imperfection on several fronts, is likely to remain the workhorse of individual differences fMRI research for the years to
come (for a glimpse of the future, see Box 4).
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represented as a brain-activity
pattern. The dissimilarity of two
patterns corresponds to the distance
between their points in the
representational space. The
geometrical arrangement of multiple
points in representational space is a
characteristic of the representation.
Retinotopy: mapping of visual input
from the retina to neurons in the
visual cortex. Techniques exist for
non-invasive retinotopic mapping with
fMRI.
Run: in the context of a fMRI
experiment, a run designates an
uninterrupted collection of fMRI data,
resulting in a sequence of successive
volumes.
Statistical parametric map: the
result of a univariate (voxel-by-voxel,
or vertex-by-vertex) statistical analysis
of fMRI data, using any standard
statistical test; it consists of the
values of the statistic at each voxel or
vertex.
Vertex: the cortical surface is
represented as a tessellation of
triangles. The vertices of the surface
mesh are the vertices of its triangular
tiles.

(the Connectome Workbench), could foster wider adoption of surface analysis. Nevertheless,
there is still no guarantee that functionally similar vertices (see Glossary) correspond spatially
across subjects after such alignment: individual differences may thus invalidly arise from incor-
rect alignment of function across subjects.

A Multimodal Common Cortical Topography
Watching a movie with a rich variety of visual, auditory, and social percepts elicits time-locked
brain activity that is correlated across subjects in many brain regions (inter-subject correlation,
ISC) [26]. After cortical folding-based inter-subject alignment, the cortical mesh can be further
warped to maximize inter-subject correlations during movie viewing [27]. In the absence of brain
activity that is time-locked to a shared external stimulus, it is also possible to instead improve the
vertex-wise match of functional connectivity patterns across subjects [28] using resting-state
data (see also [29,30]). A multimodal surface matching (MSM) framework [31] was recently
introduced that not only performs similarly to, and faster than, state-of-the-art algorithms based
solely on cortical folding [21], but that can also flexibly accept other types of data (e.g., fMRI) to
further inform registration (Figure 2A). The framework can, for example, accept any combination
of geometric (shape-based), myelin [32], task activation, retinotopy [33], and functional and
structural connectivity features. In theory, the combination of all this information in the MSM
framework should yield the best possible inter-subject alignment, with the constraint that
neighboring vertices must remain neighbors. However, the optimal set of modalities to include,
the associated cost functions, and the relative weights assigned to each modality remain under
investigation, and further validation of an improved alignment of function will be required before
widespread use can be prescribed [31].

From a Common Cortical Topography to a Common Representational Space
Another recently introduced technique, ‘hyperalignment’, goes one step further, ignoring
topological constraints altogether and using only representational geometry across subjects
– in other words matching multivariate spatial patterns of activity (Figure 2B) [34]. As before [27],
the fMRI data used in this study [34] were obtained in response to a full-length movie. The
selection of voxels/vertices that are fed into the hyperalignment algorithm is the sole spatial
constraint; data from each subject are eventually projected into a common space that can violate
topology. The original implementation of the technique relied on pre-selecting a region of
interest (ROI) [34]; a more recent whole-brain version of hyperalignment uses a searchlight
centered on each vertex, then combines the resulting transformation matrices into a large,
whole-brain transformation matrix that can be used to project the cortical data from each
individual subject onto a common representational space [35]. Ongoing work is extending the
hyperalignment algorithm to make use of resting-state data, instead of movie data, in an effort to
maximize applicability to extant datasets. In theory, whole-brain hyperalignment provides the
most thorough correction for anatomical variability. Because hyperalignment is based on an
invertible transformation of the data, individual differences are not lost at any stage of the
process. Nevertheless, the validity of individual differences measured in the common space is
not assured because individual differences of interest may also be mixed into the transformation
matrix for each subject. We would encourage researchers to explore hyperalignment for their
datasets, and to report results obtained with and without hyperalignment, such that we can
accumulate further evidence for its most appropriate application. In general, we would recom-
mend that investigators try more than one approach to alignment, and report all of them, so we
can see which might work best for which kinds of questions.

ROI Analysis
Many of the problems with alignment can be largely circumvented if a functional ROI is isolated in
each individual subject. Functional localizers have traditionally been used to improve validity [36]:
in an independent MRI run, a task designed to activate a ROI is performed, and the ROI is
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defined in each individual from a statistical parametric map (SPM) as one of the clusters that
exceeds a given threshold. However, the choice of a statistical threshold in single subjects is
often a thorny issue; recent approaches can avoid arbitrary thresholds by using mixture models
that fit the noise in each subject's data [37] or by using multiple spatial scales to define clusters of
activation (threshold-free cluster enhancement, TFCE) [38]). Another issue is of ensuring that the
individually-defined ROIs are indeed well-matched across subjects, a problem for which
approaches such as the group-constrained subject-specific (GCSS) algorithm [39] provide
elegant solutions. Functional localizers have a long and successful track-record and can provide
functional ROIs in individual subjects with only a few minutes of scanning, for processes ranging
from face perception [40] to theory of mind [41,42]. However, they quickly become inefficient if
one wants to map many different processes in a study [43]. At present we would encourage
investigators to continue using well-vetted localizers when studying specific psychological

Key Figure

Proposed Generic Analytical Pipeline for Individual Differences Research in fMRI
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Figure 1. This pipeline may not fit all situations, given the multidimensionality and multi-component nature of fMRI data. (A) Data Yraw are acquired while a subject
undertakes a particular task (movie with stars). Minimal preprocessing is applied (e.g., HCP pipelines [25] shown in the box to the right). (B) Subcortical areas are
volumetrically warped to match the MNI template, while the cortex is registered to a surface template using cortical folding patterns or a multi-modal surface matching
approach. A choice is then made between conducting a region-of-interest or whole-brain analysis. Several options for group-informed definitions of functional parcels in
individual subjects are available. Finally, hyperalignment can be performed to project data into a common representational space. (C) The preprocessed data Ypreproc are
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experiment, possibly with slight variations (e.g., at two different sites, black and gray scanners). (E) The fMRI-derived individual statistic is used together with confound
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processes; in other contexts, emerging methods for single-subject functional parcellation from
resting-state data and other modalities (Box 2) should be considered. Pending further validation
against known function, these methods may replace functional localizers altogether in the not-
too-distant future.

The Ever-Lurking Plumbing Issue
Differences in vasculature cause differences in the hemodynamic response. A review of all the
potential effects of vasculature differences is outside the scope of this article (see [44–46]); we
focus here instead on existing solutions at the level of acquisition and data analysis that are rarely
implemented but may prove crucial for valid individual differences research.

Capturing Response Shape Variability
The hemodynamic response function (HRF) is a model of the BOLD activity triggered by a neural
event of infinitesimal duration. Most fMRI analyses assume a fixed-shape HRF (the canonical HRF).
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Figure 2. Multimodal Surface Matching and Hyperalignment. (A) The multimodal surface matching framework [31]
accepts multiple sources of information to align subjects: not only sulcal patterns but also cortical thickness, myelin maps,
and RS-fMRI-derived functional connectivity, etc. (B) After selecting a region of interest in a common anatomical space,
hyperalignment [34] aligns representational spaces across subjects; it is usually based on movie data.
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However, the shape of the HRF is well known to vary across subjects and brain regions [44,47].
Factors such as vasodilatory signaling, blood vessel stiffness, neurovascular coupling delay,
venous transit time, and the time constant of autoregulatory feedback contribute to this variability
[48,49]; these factors are particularly affected by aging and disease [50]. Inferences about
individual differences in BOLD response magnitude are not valid when the true shape of the
HRF differs across subjects. To account for these variations, the use of multiple, orthogonal basis
functions to more accurately model the HRF has been proposed (reviewed in [51]). Popular
constrained basis sets include the canonical HRF plus its temporal and dispersion derivatives [52],
or a basis function set based on singular value decomposition [53]. Releasing all constraints, the
finite impulse response (FIR) basis set has one free parameter for every time-point following
stimulation for every event type modeled [54]. A caveat of increasing the number of free parameters
is the concurrent increase in variance of the HRF produced, as well as the cost to compute it.

When the shape of the HRF is fixed, the amplitude of the BOLD response is easily compared
across subjects on the basis of a single parameter estimate. Modeling HRF shape faithfully
complicates the comparison of response amplitude across subjects: the BOLD response is now
represented across several parameters, which must be jointly compared. Some solutions have
been proposed for this joint comparison, but none is widely accepted yet [51,55]. Recent work
combining estimation of the HRF shape with detection of activation in the same optimization
seems a step in the right direction [56,57], although these approaches currently assume that
HRF shape is similar across subjects in a given brain region, which may not be a valid
assumption when investigating individual differences.

HRF shape variability is problematic even for resting-state fMRI because differences in response
shape across subjects can result in differences in functional connectivity estimates. With current
analytical practices of low-pass filtering the data (considering only fluctuations slower than
0.1 Hz), the effects of small differences in response shape should be small [45]. However, as
investigators start looking at higher-frequency fluctuations [58], HRF shape variability may limit

Box 2. Functional Parcellation of the Brains of Individual Subjects

It is now well established that resting-state functional connectivity (RSFC) can extract networks in the brain that subserve
shared psychological functions [145]. Accordingly, there has been interest in using RSFC to define functional parcels or
ROIs in the brains of single subjects. There are two schools of thought regarding functional parcellation: those which allow
the parcels to overlap spatially, and those that prefer to tile the brain with non-overlapping parcels. The first school
typically uses independent component analysis (ICA) to decompose the RS-fMRI signal into statistically independent
non-Gaussian sources (spatial maps) via a linear and instantaneous mixing process corrupted by additive Gaussian noise
components [169]. The second school typically uses some variation of a clustering or region growing algorithm that
results in parcels that have homogeneous patterns of whole-brain connectivity [148,170–173], or an algorithm that
detects transitions in whole-brain RSFC [174,175].

There are two approaches to establishing a one-to-one correspondence between the parcels in different subjects that
enhance validity beyond whole-brain alignment techniques. One is to perform RSFC-based parcellation in individual
subjects independently with no prior information [148,171], then use some clustering or matching algorithm to establish
one-to-one correspondence between parcels; this can prove a rather difficult problem, with for example splitting of
parcels. The other, preferred approach is to start from a set of group-level parcels and discover their instantiation in
individual subjects. The initial group parcellation is of course critical, and may come from analyzing averaged or
concatenated individual data, or from a previously published result. Projecting it into individual brains is typically done
using dual regression in the case of IC components [176], and different approaches have been proposed for other
parcellation schemes – for example a template-matching procedure which assigns each voxel or vertex from an individual
subject to a parcel (e.g., [177,201]), or an iterative assignment procedure as in [178].

Including information from multiple modalities has proved beneficial to refine inter-subject whole-brain alignment, as
demonstrated in the MSM framework [31]. Using multiple modalities can also be instrumental in parcellating an individual
brain, as demonstrated recently: after defining a multimodal group parcellation from the HCP data (including architecture,
such as thickness and myelin content, task fMRI, RS-fMRI connectivity, and RS-fMRI derived topographic maps), a
machine-learning approach can be used to find the instantiation of each group-defined parcel in single subjects, correctly
accounting for variations in anatomy [200].
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validity in interpreting individual differences. Methods are emerging to deconvolve the sponta-
neous signal [59,60] and thus possibly account for these variations. In our view, further
development of how best to quantify and incorporate HRF variability should be of the highest
priority for individual differences research because all subsequent measures depend on getting
this right in the first place.

Accounting for Vascular Differences across Subjects: Calibration and Normalization
The BOLD signal is a function of changes in cerebral blood flow (CBF), cerebral blood volume,
and the cerebral metabolic rate of oxygen (CMRO2) [61]; it also depends on the baseline
physiological state (hematocrit, oxygen extraction fraction, blood pressure). Both hemodynamic
coupling and baseline physiology differ across subjects [45,62]. Two main approaches have
been put forward to try to control for differences in these parameters across subjects: calibration
and normalization.

The calibrated fMRI technique has been around for many years, and can in theory control
for differences in both baseline physiology and hemodynamic coupling across subjects.
The technique has not seen widespread adoption, chiefly because it is difficult to implement
(e.g., requiring concurrent measurement of BOLD and CBF and inhalation of CO2 [63,64]) and is
still imperfect [65].

Several approaches have been proposed to normalize for differences in baseline physiology
across subjects. Many rely on a companion scan. For example, the BOLD response to
hypercapnia, induced through administration of CO2 [66] or by using a breath-hold challenge
[67], can be used as a normalization factor (Figure 3A). Alternatively, whole-brain venous
oxygenation levels can be measured with a special pulse sequence and used to normalize
the BOLD response [68]. A more easily applicable option is to use the amplitude of low-
frequency fluctuations in resting-state fMRI data (RS-ALFF) [69,70] as a normalization factor;
indeed RS-ALFF reflects naturally-occurring variations in cardiac rhythm and in respiratory rate
and depth [71], and approximates the BOLD response to a hypercapnic challenge (Figure 3A). In
fact, one does not even need to acquire a separate resting-state scan. In the same way that
functional connectivity can be derived from the residuals of a general linear model (GLM) for
task-based fMRI data [72], the amplitude of low-frequency fluctuations in the residuals of task-
based fMRI data (GLMres-ALFF) can also be used to rescale the BOLD signal change; this
‘vascular autorescaling’ (VasA) technique was even shown to outperform RS-ALFF-based
normalization [73] (Figure 3B). Using data from the same fMRI run, as VasA does, is also
desirable because it avoids contamination of the data with noise from a separate run.

While all these methods were developed with the aim of improving group statistics by reducing
inter-subject vascular variance, they should be considered for valid assessment of neural
individual differences (Figure 3C) [74]. As with any manipulation of the data, there are potential
caveats: calibration and normalization methods may remove individual differences of neural
origin, for instance if baseline blood oxygenation were linked to neural activity [62]. Before such
techniques are routinely applied, more examples of their successful application will be neces-
sary, ideally vetted by an independent measure of neural function [74].

Reliability: Individual Differences or Unmodeled Noise?
Once validity is maximized (inasmuch as current technology allows), it is also crucial to ensure
that individual differences measured with fMRI are not merely attributable to unaccounted-for
noise in the measurements. The reliability of fMRI has been inspected closely in recent years [75–
77]. Of course there is no such thing as ‘the’ reliability of fMRI because different derived statistics
are differentially affected by noise in the raw data and thus have different reliabilities [78] (for an
overview of studies addressing the reliability of specific fMRI-derived measures see Table S1 in
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the supplemental information online). Moreover, although a general sense of the reliability of the
most widely used fMRI measures can be derived from extant literature, details of the experi-
mental procedures [79] and of the preprocessing applied to the raw data [80,81] matter. For
these reasons, we believe that it is crucial to provide an assessment of reliability in each and
every study that looks at individual differences, under the specific pipeline used for the analysis.
At present, individual differences in fMRI are always studied with respect to an independent
measure of the same individuals. The reliability of interest is that of the relationship between the
fMRI-derived statistic and the independent variable (see also [78,82]). There are several flavors of
reliability which are relevant to individual differences research, with direct analogs in behavioral
testing. Test–retest reliability quantifies how variable the established relationship is in the same
sample of subjects, under the same conditions (stimulus, scanner, time of day, analysis) at an
appropriate time-interval (Figure 4A). It is also important to ensure that the relationship is robust
to the exact preprocessing performed on the raw data, which can be conceived of as ‘inter-rater’
reliability (Figure 4B). In addition, because we are interested in brain function rather than the low-
level properties of a given stimulus, the relationship must also be robust to the exact experi-
mental conditions, known in psychology as ‘parallel forms’ reliability (Figure 4C). The relationship
should further hold for a different sample of subjects (from the same population) (Figure 4D), and
across scanners.

Though many measures of reliability have been proposed over the years [75], some directly
addressing the ratio of inter- to intra-subject variance [83], a predictive framework inspired by
machine-learning is best suited to establish the reliability needed for individual differences
research, as we discuss further below (see ‘Choosing Prediction over Correlation’). Reliability
is ensured when a relationship discovered in a sample of subjects at site 1 using stimulus 1 and
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analysis 1 generalizes to a different sample of subjects at site 2 using stimulus 2 and analysis 2
(Figure 4E).

Sources of Within-Subject Variance We Acknowledge and Strive To Correct For
There are several sources of within-subject, inter-session variance that are well known, and
which fMRI researchers strive to eliminate at acquisition time and/or correct for during pre-
processing of the data [84,85]. Scanner-related noise, artifacts, and drift are unavoidable but are
fairly simple to address through artifact rejection and temporal filtering. We briefly review here
two main sources of within-subject variance which are more problematic and the state-of-the-art
in addressing them: subject motion and subject body physiology.

Motion
Subject motion in the scanner leads to poor data quality, for obvious reasons: in fast echo
planar imaging (EPI) sequences, motion not only disrupts spatial encoding but also disrupts
the physical phenomena that the MRI signal relies on (e.g., resonance frequency, relaxation time
between samples). Artifacts occur with frame-to-frame movements of a few tenths of a millimeter
or less [86], meaning that they affect all datasets to some extent. The classical approach to
correcting for motion artifacts has been to first estimate subject motion through rigid-body
realignment of brain volumes, then to regress the calculated head motion parameters out of the
fMRI timecourse to correct for any residual effects of motion [87]. Other researchers also include
the global signal timecourse, the white matter timecourse, and the cerebrospinal fluid (CSF)
timecourse as confound regressors [88]. This regression approach was recently shown to
incompletely correct for motion artifacts in the context of resting-state fMRI analyses [86,89,90].
Additional corrections have been proposed, for example the removal of independent com-
ponents related to motion [91], or the complete removal of motion-affected frames, known as
scrubbing [86] ([92] for comprehensive review).

Thoroughly correcting for motion artifacts is important to ensure test–retest reliability: a given
subject may move more in one session than in another. Nonetheless, a discussion of motion
would have been equally appropriate in the previous section on validity: some subjects are

Analysis 1 Analysis 2Analysis 1

Time T1 Time T2

Analysis 1

Condi�on C1 Condi�on C2 Sample N1 Sample N2 C1, N1, site 1 C2, N2, site 2

Analysis 1 Analysis 2

‘Inter-rater’
reliability

Test–retest
reliability

‘Parallel forms’
reliability

Out-of-sample
reliability

Reliability for
individual differences

research 

(B)(A) (C) (D) (E)

Analysis 1 Analysis 1 Analysis 1 Analysis 1

Figure 4. Reliability for Individual Differences Research. (A) Test–retest reliability. The same subjects are tested with the same stimuli in the same scanner, at an
appropriate time-interval given the function of interest. (B) Inter-rater reliability. The same data are preprocessed in slightly different ways which are thought to be
interchangeable (e.g., using physiological regressors or ICA to remove physiological noise). (C) Parallel forms reliability. The same subjects view slightly different stimuli
which are thought to involve the same brain processing. (D) Out-of-sample reliability. A different set of subjects undergo the same experiment in the same scanner, and
the data are analyzed in the same way. (D) Putting it all together for individual differences research. A result (e.g., relationship between fMRI-derived statistic and
neuropsychological score) should be reliably obtained for different subjects at different sites, possibly using slightly different stimuli and preprocessing steps.
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generally more fidgety than others in the scanner (some have argued that this constitutes a trait in
and of itself, with a neurobiological basis [93]). Motion arguably contributes more to inter-subject
variance than to intra-subject variance (e.g., men tend to exhibit more head movements than
women [90], older people move more than younger people [94], and people with autism move
more than controls [95]). Motion artifacts have complex effects on fMRI statistics, and incom-
pletely correcting for them can lead to erroneous conclusions in individual differences research
[86,95–97].

Physiology
In a previous section we pointed out how differences in vasculature may affect the validity of
inter-individual comparisons. To complicate matters further, breathing and heart rate affect fMRI
measurements. For instance, motion of the chest wall with respiration results in magnetic field
changes [98], normal alterations of the depth or rate of breathing lead to variations in arterial CO2

[99] and subsequent bloodflow changes [100], and pulsatile bloodflow due to heartbeat leads to
fluctuations in signal intensity in arteries, arterioles, and other large vessels [101].

A common approach to correcting for these artifacts is to collect independent measurements of
the heart rate (with a pulse oximeter) and respiration (with a respiratory belt), and regress them
out of the fMRI signal using one of several available algorithms (reviewed in [85]); however, these
corrections are not routinely applied. Interestingly, it has been found that many of these model-
based corrections actually reduce test–retest reliability for functional connectivity analyses
[102,103]. This has been interpreted to mean that a large fraction of functional connectivity
reflects basic physiological signals [102] (another validity issue, e.g., [104]). A more optimistic
take is that these model-based approaches still need some tweaking – either the models are not
physiologically accurate or the measurements of heart rate and respiration are suboptimal (too
noisy, or not measuring the variable of interest). Further development of the models (e.g., [105])
and of new and better MR-compatible measurement devices such as a continuous blood
pressure monitoring device is needed [85].

Other approaches only rely on the fMRI data without the need for separate measurements
(reviewed in [85]; see also [106–108]). Most of these are based on decomposing the data into
components, for example, using independent component analysis (ICA) (but see [109]). Some of
these methods have been shown to improve reliability [110]. However, a fair comparison with
model-based physiological regression has not been conducted yet – typically, decomposition-
based denoising techniques target a wider range of artifacts, including motion.

In decomposition-based methods, identifying noise components is not always trivial [111]; some
components may be a mixture of signal and noise, and there is a risk of ‘throwing the baby out
with the bathwater’. Automated algorithms, such as ICA-FIX [108], rely on prior manual
classification of components, and are therefore not immune to this criticism. A promising
new approach to teasing apart signals of neural origin from artifacts was recently introduced:
using multi-echo EPI [112] it appears possible to distinguish a genuine BOLD effect from artifacts
by looking at the timecourse of MR decay. The technique could lead to improvements in both the
validity and reliability of measurements [113]. Finally, its combination with recent developments in
simultaneous multi-slice acquisition [114] could make it a viable imaging protocol in terms of
temporal and spatial resolution [115]; we are thus eagerly awaiting further validation and
improvements of this technique (see also [116] for a related approach).

Other Sources of Intra-Subject Variance
Another Physiological Rhythm: Vasomotion
Vasomotion refers to the spontaneous changes in tone of blood vessels, independently of heart
rate and respiration. Vasomotion leads to low-frequency oscillations in the BOLD signal [117].
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There is some evidence that vasomotion may be localized to specific regions of cortex [118],
making it a potentially serious confound. As with previous artifacts, vasomotion may differ
systematically across subjects (validity). It is as yet unclear how vasomotion should be dealt with.

Baseline Physiological State
Baseline physiological state was already discussed in the validity section, but baseline physiology is
also variable for a given subject. Going for a run an hour or less before scanning may lead to
alterations of baseline physiology [119,120]. Anxiety or stress [121], extended exposure to high
altitudes [122], recent sleep quality [123,124], or phase of the menstrual cycle (for women) [125] are
all examples of poorly understood vascular and neural factors that may hinder the reliability of fMRI
measurements if they are not properly measured and incorporated into a full model [126].

Neuromodulators and Vasoactive Substances
The effects of caffeine on fMRI measurements have been studied extensively. While it was once
held that a dose of caffeine was a way to enhance the BOLD response [127], subsequent studies
have muddied this picture [128,129]. Many complex effects of caffeine have been reported over
the years, such as enhanced linearity of visually evoked BOLD responses [130]. The complexity
likely stems from the double action of caffeine on neural activity and on hemodynamics ([131] for
review).

Several other routinely consumed substances such as alcohol, nicotine, illicit drugs, and
prescription medication, and even foods and food supplements, also have complex neural
and vascular effects on fMRI measurements, and these are beyond the scope of this review.
Using arterial spin labeling (ASL) and fMRI to obtain a better understanding of these effects, a
field of research known as pharmacological MRI [132], may be a further important ingredient
towards a reliable science of individual subjects from fMRI.

Further Considerations for an fMRI Science of Individual Differences
Choosing Prediction over Correlation
Currently the only way to interpret a fMRI-derived statistic is to relate it to another individual
measure in the same set of subjects, such as their age, gender, test scores indexing aspects of
intelligence and personality, or other measures of behavior (Table S2). By far the majority of fMRI
studies of individual differences use correlation analysis to establish such a relationship. Corre-
lation analysis relies on in-sample population inference and does not directly ensure the
generalizability of the established relationship to out-of-sample individual subjects [133,134].
Shifting to a predictive framework is necessary to ensure generalizability and to interpret fMRI-
derived statistics at the individual subject level [17,135] (for a more in-depth discussion of
adopting a predictive machine-learning inspired framework, and the proper use of training,
validation, and test datasets, see [136]). To fully control for remaining confounds, fMRI-derived
statistics should be included in a full model alongside other potential predictors, and the unique
predictive power of fMRI features should then be assessed through their selective removal from
the model (as demonstrated in [16]) (Figure 1E).

Increasing Sample Size
It is now widely recognized that the small sample sizes routinely used in fMRI studies (n = 10–50)
have low statistical power; given current reporting practices, this leads to inflated estimates of
effect size [137,138] (Figure 5C) and thus poor replicability (see Box 3 for an overview of
replicability-enhancing practices). fMRI research is not the first to face this challenge [143]. The
current heuristic for studies using correlation analysis is a sample size of at least 100 (see [139]
and Figure 5A for a more quantitative recommendation). In addition, replication in an indepen-
dent sample is a worthy precaution, and this should be a requirement for studies that are not
based on a strong prior hypothesis.
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Larger samples are also beneficial in a predictive framework: a larger number of examples
guards somewhat against overfitting. As to replication in an independent sample, it is a defining
feature of a predictive framework. Model selection is conducted on the basis of training data, and
independent testing data is reserved until the model is finalized. The fully trained model is tested
once, and once only (as in machine learning competitions [140]), on the test data to establish
generalizability (but see the recently introduced ‘reusable holdout’ algorithm for a viable alter-
native [202]).

Sample sizes in excess of 100 are still difficult to achieve for a small research group funded by a
typical research grant; thus, despite this recommendation, underpowered correlation studies
without internal replication will continue to be published. While it might seem that the cumulative
output from many underpowered studies should eventually converge to a reliable conclusion
through meta-analysis, this is not the case because of the strong bias to publish only significant
findings [136,141] (Figure 5C). The reporting of all results regardless of their significance in the
null hypothesis significance testing (NHST) framework, which could be implemented through
initial pre-registration to ensure the quality of the methods [142], would be a way for studies
with small sample sizes to contribute unbiased information for meta-analysis.

To achieve larger datasets in fMRI, data collected at different institutions can be aggregated in a
shared online resource [144], as pioneered by the 1000 Functional Connectomes Project [145].
Several data-sharing platforms are currently available (see [146]), for example openfMRI [147].
For the accumulation of data across sites, standardized procedures must however be imple-
mented. Resting-state fMRI is an obvious candidate for data aggregation given minimal
instructions and requirements but, as we noted earlier, ‘small’ details must still be carefully
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controlled (Box 1). Although simple task fMRI paradigms (e.g., finger tapping [148]) would also
be good candidates, they may be too inefficient in that they are restricted to a narrow set of
processes. We view movie fMRI as particularly well suited for data aggregation, given its ability to
capture richer representational information while better matching subjects’ mental states com-
pared to the resting-state (Box 4), and at the same time preserving similarly minimal instructions
and requirements.

Standardized procedures are of course easiest to implement in the context of large-scale
projects such as the IMAGEN project (2000 subjects) [149], the WashU–UMinn Human
Connectome Project (1200 subjects) [150], or the Cambridge Center for Ageing and
Neuroscience (approximately 700 subjects) [151]. The latter two projects are aimed at
acquiring state-of-the-art data and distributing it as a data-mining resource for fMRI
researchers around the world. Projects such as these are akin to the accelerators used
by particle physicists or the large telescopes used by astronomers: a few sites in the world

Box 3. Increasing the Reproducibility of fMRI Research

The replicability of fMRI research has recently been called into question. Culprits for the lack of replicability are small
sample sizes [138], analytical flexibility [179] which fosters p-hacking [180] without appropriate control for the overall risk
of false positives [181], and the bias to publish only statistically significant results (also known as the file drawer problem
[182]). This means that we are often building new research on fragile grounds (previous false-positive results), and thus
wasting a large amount of resources [183]. A shift in research practices is necessary.

Reproducibility consists in obtaining the same results using the same code and data [184] (Figure I) (see also [183] for a
slightly different terminology); it is a lower scientific standard than fully independent replication using a different dataset
and similar analysis, but ensuring reproducibility in the first place is a surefire way to enhance replicability (although see
[185] for a differing view). We note that failure to replicate a finding need not always imply that the finding was a false
positive: a difference in outcome may also stem from any number of effects in execution or analysis that, unknown to the
investigators attempting the replication, have actually changed the psychological process under investigation. Replica-
tion attempts help to establish the conditions under which a given finding is robust.

Following earlier recommendations for reporting fMRI methods [186], a recent white paper draft (from the OHBM
Committee on Best Practices in Data Analysis and Sharing, also known as COBIDAS) is likely to be adopted by the
imaging community. It identifies transparency, detailed reporting of methods, and importantly sharing of data and
analysis pipelines (Figure I) as key ingredients for reproducible fMRI research. Data-sharing platforms were discussed in
the main text [146]; there are also platforms to share code, and guidelines on how to use scripting and pipelining to foster
reproducibility [183]. An example of how to implement these recommendations is to release all the data together with a
virtual machine environment to allow others to execute identical analyses [126]. At this stage such diligence still requires a
large amount of technical overhead and cannot be made mandatory. The enforcement of these recommendations will
initially largely depend on journals following suit and requiring these ingredients for publication, or on reviewers taking
them into account when evaluating their peers’ research. However, a growing set of resources may soon make this effort
much more feasible and thus more widely adopted; in particular, we are closely following the efforts of the Stanford
Center for Reproducible Neuroscience (http://reproducibility.stanford.edu) and of the Scientific Transparency Project
(http://post.stanford.edu), both aiming at providing web-based platforms to generate reproducible workflows and
leverage high-performance computing for the analysis of neuroimaging data.
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acquire the best possible data, and these data are subsequently probed (for many years) by
the best analysts around the world.

Towards Normative fMRI Research?
A key concept in psychology is that of a ‘norm’, in other words the distribution of a score in the
population of interest. Scores on psychological tests are usually standardized with respect to
their distribution in a large normative sample (the size of which depends on the distribution of the
score [152]), and this allows their direct interpretation without recourse to another measure. In
the future, we may be able to interpret the fMRI-derived statistic of an individual subject in light of
its distribution in a normative sample, provided that absolute reliability is achieved; this approach
could lead, for clinical imaging, to a more biologically informed science of human neuropsychi-
atric disease [153,154] and a better basis for personalized medicine.

Concluding Remarks
Individual differences in brain function are key to understanding healthy differences based on
personality, gender, age, or culture. They are also crucial for personalized medicine approaches
to neuropsychiatric diseases. Recent technical advances have increased the sensitivity of
functional MRI and set the stage for a characterization of brain activity at the level of momentary
mental events in individual subjects. We now face key challenges of reliability and validity on the
path to an fMRI-informed science of individual differences. We already have some tools to
address these challenges: we propose a pipeline for the measurement and analysis of individual
differences with fMRI as shown in Figure 1, on the basis of current knowledge (see Outstanding
Questions). While interpretation of fMRI-derived measures currently relies on independent

Outstanding Questions
Will the newer methods that we
describe here and recommend
(highlighted in gray in Figure 1) stand
the test of time?

Which of the concerns reviewed here
(inter-subject alignment, hemodynamic
variability across subjects, sources of
noise) are the most important, and
which can often be ignored in practice?

How do the many corrections we have
reviewed here interact with one
another? For example, does normali-
zation become superfluous when the
HRF is properly modeled?

How long will BOLD-fMRI still be the
norm for non-invasive functional imag-
ing of the whole brain in awake
humans? Are other more valid non-
invasive imaging techniques conceiv-
able in the future?

What other modalities can be com-
bined with fMRI to provide a richer
set of measures and enhance validity,
besides physiological recordings?
Options include eye-tracking, EEG,
and fNIRS.

Should pre-registration be required for
fMRI studies of individual differences
below a minimum sample size?

What role will behavioral and genotypic
data play in the future? Will these
always be required, or can we explore
individual differences in a data-driven
way based on fMRI data alone?

Will fMRI-derived individual differences
lead us to revise clinical diagnostic
categories?

Box 4. Individual Assessment with Naturalistic, Condition-Rich Designs.

One promising class of stimuli, which affords tighter control on internal states than the resting-state while still being
scalable (e.g., for aggregation of data across centers), comprises movies [26] and narrated stories [187]. These are
naturalistic, highly-engaging stimuli which are very effective at driving brain activations and encompass a great diversity of
mental states. Public datasets relying on story/movie data are in the making: for example, the studyforrest project recently
released a high-quality 7T fMRI dataset of subjects listening to the narrated movie ‘Forrest Gump’ (1994) [188]. Efforts to
extract and distribute annotations that can be used in analyses have also begun [189]. We present here three main
methods to study the representations triggered by such stimuli across subjects.

Inter-Subject Correlation

Because all subjects watch the same movie, the timecourse of stimulus-related activity in their brains should look similar
[190]. As one would expect, activity in early sensory cortices is similar across subjects, whereas activity in association
cortices is less similar [26]. Dynamic inter-subject correlation analysis in light of a rich featural description of the stimuli is a
promising avenue of research to capture rich information about individual differences in brain representations.

Representational Geometry

Different stimuli are represented in the brain along several dimensions, and representational geometry denotes the
arrangement of stimuli in that space and the distances between them [191]. While representational geometry and
representational similarity analysis have so far been exploited mostly to assess different models of brain function [192–
194], they can also be leveraged to compare representational geometry across individual subjects [195,196]. Repre-
sentational geometry can be derived from movie or story data, provided that the events of interest are properly labeled
[189].

Voxel-Wise Modeling

Voxel-wise modeling consists in using high-dimensional featural models of natural stimuli as encoding models to make
sense of fMRI data [197]. When a model is found to satisfactorily predict the data out-of-sample, it can then be
interpreted. A recent study using movies with annotated semantic features generated detailed semantic maps of each
subject's brain [198]. These maps represented those movie features that were most predictive of the activations
observed at each voxel in the brain. These semantic maps capture a tremendous amount of information about the brain
activity of each subject, and thus interrogating them with respect to individual differences is a very exciting endeavor.
Such work is already well underway [199].
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measures of behavior, psychological scores, and neuropsychiatric diagnosis, we are hopeful
that in the near future they will stand on their own in light of normative data. No matter the
strategy, increasing sample size dramatically is necessary, and data-sharing efforts together with
standardized procedures and reproducibility-enhancing practices will be key to the process.
Beyond the current emphasis on resting-state fMRI data, which is easy to perform and
aggregate, the use of naturalistic stimuli that capture rich inter-individual differences in cognition
is a direction worth exploring.
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